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Abstract—A database compiled by V. K. Gusiakov was used to model tsunami intensity using various other parameters (i.e. earthquake 
moment magnitude, focal depth, tsunami efficiency, and distance to the nearest shore) as explanatory variables. For the modelling, artificial 
neural networks, adaptive network based fuzzy inference systems, and multiple linear regression techniques were employed. The 
modelling is used not so much for mathematical representation, but to explore the current knowledge about physical parameters related to 
tsunamis. We show that transforming the tsunami intensity values I to 2^I yields better correlations. Earthquake moment magnitude values 
greater than 8 cause substantial tsunamis, and the effects of the other explanatory variables are not very significant. There is a large 
scatter of tsunami intensity versus earthquake moment magnitude, justifying a two-valued prediction scheme, but this scatter reduces 
substantially with the increase of earthquake moment magnitude. The performance of artificial neural networks is better when compared 
with the other two modelling schemes; however, the changes in membership functions of the fuzzy inference system give us some genuine 
domain knowledge. 

Index Terms— earthquake magnitude, tsunami intensity, fuzzy inference systems, neural networks, multiple regressions. 

——————————   u   —————————— 

1 INTRODUCTION                                                                     
ARIOUS relationships have been proposed between tsu-
nami intensity (I) and earthquake magnitude (Mw) [1], 

[2], [3]. In most of these, earthquake magnitude alone has been 
used to predict tsunami intensity and no indication has been 
given regarding the variability of the relationships. Chubarov 
and Gusiakov [2] propose a linear relationship between I and 
Mw, whereas Blackford [3] proposes a linear relationship be-
tween log10 Hav and Mw, where Hav is the average wave 
height in metres along the nearest coast to the earthquake lo-
cation. 
     Researchers have also studied other factors that could in-
fluence tsunami intensity, while acknowledging that Mw is 
the dominant influence on I. Okal [4] used numerical simula-
tions to deduce that focal depth (up to 100-150 km) and slip 
direction were less important factors than the orientation of 
the fault plane to the target coast and the variation of ocean 
depth perpendicular to the path of the tsunami wave. Geist et 
al. argue that higher water depths cause greater tsunami wave 
heights in the near field [5], [6]; this effect has been noted for 
far field tsunamis too [4]. Geist [5] also quotes Abe [7], who 
argues that the relationship between Hav and Mw would be 
different for near and far field tsunamis, suggesting that dis-
tance to the source could be a parameter of significance. 
     Gica et al. [8] used a numerical model to examine the effect 
of different earthquake fault plane parameters (dip, strike and 
rake angles, fault dimensions, slip displacement and focal 
depth) on tsunami wave height in the far field. The wave 
height was found to increase with a decrease in focal depth 

from 93 to 33 km, justifying the argument that if an earth-
quake happens closer to the earth surface, it would cause a 
stronger disturbance and generate a higher tsunami wave; this 
effect was reversed however at focal depths below 33 km and 
also not noticeable for very distant earthquakes. Other fault 
plane parameters were found to have varying significance [8], 
[9].  
     For various regions in the Pacific, Gusiakov [10] deter-
mined a quantitative value called the Tsunami Efficiency (TE) 
coefficient. The coefficient TE is calculated as the percentage 
ratio between the number of tsunamis of tectonic, landslide, 
and unknown origin and the total number of coastal and sub-
marine earthquakes with surface magnitude greater than 7.0 
and depth less than 100 km that occurred within a given re-
gion during time period from 1901 to 2000. Based on the TE 
for each tsunamigenic region, Gusiakov [10] divided the re-
gions into three categories, named Red (TE is above 60%), 
Green (TE between 40–60%) and Blue (TE less than 40%), that 
roughly correspond to the increased, normal and decreased 
levels of this ratio as compared to the average for the whole 
Pacific. He then used a numerical model to generate tsunami 
intensities from earthquakes in the Pacific during 1900-1998. A 
plot between earthquake magnitude (Mw) and resulting tsu-
nami intensity on the Soloviev-Imamura scale (I) showed that 
earthquakes in the red region generate tsunamis with higher 
intensity than those in the other two regions [11]. 
     The main objectives of this study are to model the likeli-
hood and intensity of tsunamis for recorded earthquake mag-
nitudes and other relevant parameters, and to evaluate the 
comparative advantages of input-output modelling schemes 
such as artificial neural networks (ANN), adaptive network 
based fuzzy inference systems (ANFIS), and multiple regres-
sion (MR). The main independent variable is the earthquake 
moment magnitude, Mw [12], while the dependent variable is 
tsunami intensity, I, defined [2] as  
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              I = ½ +  log2 Hav                                 (1) 
 
This tsunami intensity is also known as the Soloviev-Imamura 
scale [13] (quoted by Gusiakov in [14]). It must be noted that 
using a single measure such as tsunami intensity could mask 
the great many variations inherent in a phenomenon such as a 
tsunami [15]. However, it would be sufficient for the level of 
accuracy desired in this research. This is because the main 
purpose of the modelling was not the derivation of precise 
mathematical relationships, but rather the exploration of cur-
rent knowledge regarding physical parameters related to tsu-
namis. 
     There are two ways in which this paper seeks to make a 
specific contribution to the existing knowledge. The first is 
that it seeks to use recorded historical data rather than gener-
ated data (used by many other researchers). The second is that 
it has focused on parameters that can be used immediately 
after an earthquake so that the model could be used in a pre-
dictive mode, thus contributing to a decision as to whether a 
tsunami warning should be issued or not. So, very specific 
source data such as slip direction and fault dimensions are not 
used. However, inputs such as distance to the source and focal 
depth are explored, in addition to Mw, the dominant factor. 
While technology is available for real time computing and 
data driven models [16], there is also arguably a role for great-
er robustness in simple models, in order to serve as checks on 
the more sophisticated models, and to make quick computa-
tions in the field.  
     In this work, three modelling techniques (i.e. ANN, ANFIS, 
and MR) were employed to derive the relationships between 
Mw and I. MR is a classical way of finding relationships 
among different variables. Meanwhile, though lacking the 
formality of regression techniques, ANNs have become a 
powerful way of establishing input-output relationships. Var-
ious approaches have been used to minimize the black box 
nature of ANNs, including the use of sensitivity analysis. AN-
FIS is a newly emerging alternative to ANNs, where some 
rationality regarding the model and its outputs is exhibited. 
More recently, ANN approaches have incorporated factors 
other than earthquake magnitude in modelling [17], [18]. They 
have also been used to forecast tsunami intensity in real time 
with inputs obtained after the earthquake event [16]. The en-
suing section presents the three modelling techniques em-
ployed in this work. 

2 MODELLING TECHNIQUES 
The data used for the modelling had been compiled by 
Gusiakov [14] and covers the period from 2000 BC to 2007 AD, 
containing 2275 historical events. The validity (v) of the tsu-
nami events is mapped to integers ranging from 4 (definite 
tsunami) to 0 (false entry). There are 776 definite tsunami 
events and 152 events with zero validity. This database is gen-
uinely global in scope and characterized by parametric data 
that can be used for data analysis; it is also very similar to the 

other global database maintained by the National Ocean and 
Atmospheric Association [19]. 

2.1 Artificial Nural Network 
Artificial neural networks have been used in various civil en-
gineering problems such as predicting properties of concrete 
[20], buckling load of cracked columns [21], and also for con-
struction bid decisions [22].  
     In this work, feed-forward ANNs with sigmoid hidden 
neurons and a linear output neuron were used to explore pat-
terns in earthquake magnitude and resulting tsunami intensi-
ty. MATLAB [23] software was used to implement the neural 
networks, which were trained using the Levenberg-Marquardt 
back propagation algorithm [24]. One hidden layer with 10 
neurons was found by trial and error to be the optimum. The 
training set contained 75% of the data, while the validation set 
(20% of the data) was used to measure network generalization, 
and to halt training when generalization stopped improving, 
as indicated by an increase in the mean square error (MSE) of 
the validation samples. The last 5% of the data provided an 
independent test of the network’s generalization. The perfor-
mance of the various ANN models is evaluated using regres-
sion analysis between network outputs and targets for all the 
data.  
     As indicated in Table 1, a range of ANN models (Rows 1 to 
11) were tried, having various inputs and their combinations. 
The inputs used were earthquake moment magnitude (Mw), 
focal depth to the earthquake event (Depth), distance to the 
nearest coast (Dist) and tsunami efficiency, captured by TE or 
Rn, which stands for Gusiakov’s regions [10] in a qualitative 
way, with the numeric inputs 3, 2 and 1 representing the red, 
green and blue regions respectively. The single output was 
tsunami intensity, either in raw or transformed state. The 
number of data sets used for each model is also given. 
     An ANN model does not give any explanation about its 
output and acts as a black box, thus necessitating sensitivity 
analyses [20]. ANFIS is a later development of ANNs that 
provides some rationality about its modelling process through 
changes in the shapes of membership functions (MFs) [26], 
[27]. 

2.2 Adaptive Network based Fuzzy Interence System 
Numerous attempts have been taken to address complex 
problems in civil engineering using ANFIS, e.g. sediment 
transport [29], bridge risk assessment [30], rainfall-runoff 
modeling [31], and design of reinforced concrete beams [32]. 
     In this work, an ANFIS model was created to explore the 
effects of earthquake magnitude (Mw) and focal depth (D) on 
tsunami intensity, transformed as two to the power I (Row 12 
in Table 1). It is based on a zero order Sugeno-type fuzzy in-
ference system, i.e. with constant output MFs. Preliminary 
studies indicated that Gaussian membership functions would 
yield the lowest mean square error (MSE), with 2 and 3 MFs 
for the inputs Mw and Depth respectively. The data set was 
divided into two sets, with 75% of data for training (as for the 
ANN exercises) and 25% of data for testing. During the learn-
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TABLE I. MODEL INPUTS AND OUTPUTS 

Row  Inputs Output Data sets Slope R MSE Remarks 

1 Mw I 351 0.36 0.576 2.87 ANN ê 

2 Mw , Rn I 339 0.40 0.639 2.51  

3 Mw , Rn I 277 0.45 0.656 2.39 v = 4 data ê  

4 Mw , Rn I 129 0.49 0.678 0.56 I > 0 data ê  

5 Mw , Rn 2I 129 0.71 0.846 6.40  

6 Mw , TE 2I 129 0.70 0.859 6.40  

7 Mw , TE, Depth 2I 126 0.67 0.836 6.18  

8 Mw , TE, Depth, Dist 2I 113 0.72 0.856 6.37  

9 Mw , Depth, Dist 2I 113 0.74 0.855 6.21  

10 Mw , Depth 2I 126 0.74 0.861 5.93  

11 Mw  2I 126 0.77 0.828 6.95 ANN é 

12 Mw , Depth 2I 126 0.71 0.828 6.72 ANFIS 

13 Mw , Depth 2I 126 0.69 0.812 7.30 MR 
 

ing process, ANFIS uses the training data set to adjust mem-
bership function parameters and determine the consequent 
parameters. The testing data provides an independent check 
on the ANFIS models. 

2.3 Multiple Regression 
After modelling tsunami intensity with ANN and ANFIS, 
conventional multiple linear regression analyses were per-
formed for the 2^I versus Mw and Depth model. Several re-
gression models were tried and the best selected (Row 13 in 
Table 1). Only 75% of the data was used to fit the model, as for 
training the ANN and ANFIS models, and the balance for test-
ing. The regression analysis was carried out using Minitab14 
software [33]. 
     Finally, since there is a lot of scatter in the relationship be-
tween I and Mw, it was decided to use a simple relationship 
between I and Mw alone, where I is treated as a linear func-
tion of Mw, but to make it two valued, corresponding to the 
upper and lower bounds of the relationship.  

3 RESULTS AND DISCUSSION 

Table 1 summarizes the results. Three indicators are used to 
evaluate the models: the correlation coefficient (R) between the 
model outputs and target recorded values, and mean square 
error (MSE) reflect the scatter in the model, while the slope of 
the best fit line between model outputs and targets reflects the 
degree to which the model has captured the trend.  

Row 1 is the base case and is represented by Figure 1(a). 
There are 351 data points here (many of them overlapping); 
these are records from v = 1 to 4 that have I and Mw values 
reported. In Row 3, we have decided to focus only on events 

with the highest degree of validity, i.e. v = 4 [14]. This has re-
duced the number of data sets available to 277. (Note that alt-
hough there are 776 events with v = 4, only 277 of them have I 
and Mw values reported). In Row 4, only data with I > 0 was 
used, and this has resulted in only 129 samples being available. 
The reason for this selection is that significant wave heights are 
represented only when I > 0. As per Eqn (1), the H_av corre-
sponding to I = 0 is 0.71 m. This strategy results in a very good 
improvement in the MSE, which has reduced from 2.39 in Row 
3 to 0.56 in Row 4. It should be noted that such grouping of 
data should normally be done for input as opposed to output 
data. However, we have used this approach to demarcate the 
output I values because there is only a single output, whereas 
we introduce various other inputs in combination with Mw. At 
any rate, from this row below, given that only data for I > 0 is 
used, we can say that the modelling represents higher end es-
timates for I. 

From Row 5 onwards the output is a transformed version of 
I, namely 2^I, which is a sort of alias for the wave height – see 
Eqn (1). Row 5 is represented by Figure 1(b), with 129 data 
points (once again, many of them overlapping). We see a dra-
matic improvement in the R-value after this transformation. 
Although there is an increase in MSE compared to Row 4, the 
units of MSE would be different and hence cannot be com-
pared across this transformation. In Row 6, the essentially qual-
itative input Rn is replaced with the quantitative one TE. It is 
seen subsequently that any regional effect (whether through Rn 
or TE) is not significant. In fact, although Gusiakov’s numerical 
modelling gave clear boundaries between the three regions as 
stated before, a plot of I versus Mw for the actual raw data 
does not result in the three regions being demarcated at all IJSER
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Fig. 2.  ANFIS membership functions for Mw; with “mw1” corresponding to 
“low” and “mw2” to “high”, before training (top) and after training (bottom), 
showing marked variation. 

 

 

 
Fig. 1.  Data points for ANN models; corresponding to (a) Row 1 in Table 

1(the base case, showing large scatter); and (b) Row 5 in Table 1 (showing 
much less scatter and better trend, after data selection and transformation) 

[10,14,34]. From Rows 6 to 11, focal depth and distance to shore 
are also added to the model, but only depth is retained at Row 
10, which represents the best ANN model. 

Row 12 gives the ANFIS results. The ANFIS results show 
slightly inferior performance compared to the ANN model in 
Row 10. However, as seen in Figure 2, the change in the mem-
bership functions before and after training is very informative. 
The line “mw1” is the support for Mw being “low” with re-
spect to increased tsunami intensity, whereas the line “mw2” is 
the support for Mw being “high”. After training, the “mw1” 
line shows that an Mw value of even 7 has a support close to 
unity of being “low”; while the “mw2” line shows that the 
support for Mw being “high” increases significantly above zero 
only after a value of 8. This means that Mw values of even up 
to 7 are unlikely to cause tsunamis, which are likely to be sig-
nificant only when Mw is greater than 8.  

Row 13 in Table 1 gives the MR results, which are only 
marginally inferior to both the ANN and ANFIS models. The 
advantage with MR is however its portability – i.e. an equation 
is readily available – and formality, with respect to determin-
ing the statistical significance of the model and its parameters. 
The best fitted multiple linear regression model is: 

       2^I = 33.9 - 4.85 Mw + 0.0078 D + 0.00293 exp(Mw)           (2) 

where D is in km. 

The t-statistic for each predictor was computed and these 
indicated that all the parameters except focal depth (D) are sig-
nificantly different from zero. Although the contribution from 
depth (D) is not statistically significant even at a 10% level, it 
was kept in the model since the ANN and ANFIS models were 
mildly sensitive to it too [34]. While tsunami intensity should 
generally decrease with increasing focal depth, it should also 
be noted that 65% of the D values were below 35 km; such data 
points may have dominated the parameters, resulting in I 
showing an increase with D, as found by Gica et al. [13] in that 
range too; they indicate that the effect of focal depth is not very 
significant, which also agrees with our findings. 

Looking at the form of Eqn (2), it can be considered primari-
ly as a linear relationship between 2^I and exp(Mw). If a loga-
rithmic version of this is considered, it yields a form that is 
quite similar to the linear relationship between I and Mw ad-
vocated by other authors [2]. However, since the exp(Mw) term 
would tend to over-predict I at higher Mw values and vice ver-
sa, the (33.9 – 4.85 Mw) component of the equation serves as a 
corrective for this tendency. The (0.0078 D) term adds very lit-
tle to the result. It should be noted that all these models have 
been derived for Mw values ranging from 6.5 to 9.5 and D val-
ues ranging from 1 km to 83 km; hence they should only be 
used within those ranges.  

Figures 3 (a), (b), and (c) give a comparative assessment of 
the ANN, ANFIS and MR models respectively. The dashed 
lines denote points where the outputs and targets would be 
equal, and the solid lines give the best-fit lines between model 
outputs and targets. All three models tend to over-predict at 
low I values and under-predict at high ones. Although the 
ANN model has slope and R-value closest to unity (and is 
hence the best model), the differences between the models are 
not that great; and each approach has its advantages, as de-
scribed above. 
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Fig. 3.  Comparison of predictions from the best models out of (a) ANN; (b) 
ANFIS; and (c) MR models 

 

 

Fig. 4.  Two valued estimates for I from Mw 

 

TABLE II. PERFORMANCE OF MODELS IN GENERATING I VALUES, IN BOTH FITTING AND PREDICTING MODE 

  Actual Values Predicted I 

Date Place Mw D (km) I ANN ANFIS MR 

Linear 

UB LB 

2004.12.26 Indonesia 9.3 10 4.5 4.5 4.6 4.4 4.8 3.8 

2005.03.28 Indonesia 8.6 30 1.5 2.8 2.7 3.1 4.2 1.2 

2010.02.27 Chile 8.8 35 3.0 3.2 3.4 3.4 4.4 1.9 

2011.03.11 Japan 9.0 24 4.1 4.3 4.1 4.0 4.6 2.6 

2011.07.06 New Zealand 7.6 18 0.6 2.1 1.9 1.6 3.4 -2.6 

2012.04.11 Indonesia 8.6 23 0.6 2.8 2.9 3.0 4.2 1.2 

2012.04.11 Indonesia 8.2 23 -1.6 1.7 2.1 2.3 3.9 -0.3 
 

Finally, Figure 4 shows a different (and simple) approach 
for deriving a two-valued estimate for I from Mw alone, once 
again using the well-established linear relationship, but in a 
different way. The upper and lower linear regression lines are 
lines of best fit through the uppermost and lowermost I values 
for Mw values ranging from 7 to 9.5. The fitted data points are 
at the top and bottom extremities of the v = 4 data only in Fig-
ure 1(a). The modified lines (for which equations are given) are 
obtained by making parallel shifts until the lines pass through 
the two I values available for Mw = 9.5. It should be noted that 
the gap between the two lines closes quickly with the increase 
in Mw. 

Table 2 gives some actual Mw, D and I values and com-
pares these actual I values with the predictions from the mod-
els in this paper. For the first two and next three rows the data 
was directly obtained from Gusiakov [14] and the Historical 
Tsunami Database for the World Ocean [35], respectively. Since 
the latter did not have data for the last three rows, the data was 
obtained from the National Ocean and Atmospheric Associa-
tion [19] database, from which the I value had to be calculated 
as per Eqn (1), using the run-up for the nearest coast. The first 
two data rows represent data points that are already included 
in the modelling. The last five data rows represent data points 
that have not been used in the models and are hence a good 
test of the model.  

All of the data points have fairly high Mw values. The I 
values of the last three data rows are not well predicted by the 
model, because they are low values. This is to be expected be-
cause the modelling was focused on combinations that gave I 
values larger than zero – see Figure 1(b). The modelling works 
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very well especially for such combinations reflected in the first 
four data rows, the first two having been fitted by the models 
but the next two actually predicted. 

Although the I values in the last three data rows are not 
well predicted, the actual I value for the New Zealand tsunami 
is within the upper and lower bounds of the linear model 
shown in Figure 4. However, for the two Indonesian tsunamis 
in 2012, the actual I values are below even the lower bound of 
the linear model. Here too, the I value of the first tsunami (Mw 
= 8.6) is not too much below the lower bound; the second tsu-
nami (Mw = 8.2) was an aftershock and perhaps not typical. 
We could argue that the linear model of Figure 4 does in fact 
help somewhat to explain the variability in tsunami heights 
that can be expected even from earthquakes with Mw values 
greater than 8. However, in future, more work needs to be 
done to model how high Mw values sometimes result in low I 
values, perhaps by taking into account the type of tsunamigen-
ic earthquake [11].  

4  CONCLUSIONS 
Earthquake magnitude (Mw) is the most significant parameter 
among others examined (i.e. focal depth, tsunami efficiency, 
and distance to the nearest shore), which affects the resulting 
tsunami intensity (I). Transforming the I values to 2^I (which 
is a sort of alias for wave height) yields better correlations.  
     The performance of ANN is better when compared with the 
other two modelling schemes, i.e. ANFIS and multiple regres-
sions. However, the changes in ANFIS membership functions 
give us some genuine domain knowledge. The ANFIS model-
ling shows that it is only when Mw values are greater than 
around 8 that significant tsunamis are caused; whereas Mw 
values of even up to 7 are unlikely to cause tsunamis. 
     There is a large scatter of I versus Mw, justifying a two-
valued prediction scheme, but this scatter reduces significant-
ly with the increase of Mw. Although the two-valued linear 
models helps to predict the largest and smallest I values that 
can be expected, more work needs to be done to model how 
high Mw values sometimes result in low I values. 
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